
Regression Methods in the Control of Dynamic Systems

Jackson Banbury
1000331553

CSC2515
Fall, 2017

Abstract

This project seeks to explore the application of regression methods in machine learning in
the space of dynamic control systems. The objective is to use regression to fit and predict
trends in physical measurements used in a system that are subject to stochastic noise in
order to offer better convergence to a trajectory or equilibrium. The performance of the
regression methods will be compared to more traditional filtering methods commonly used
in linear and nonlinear control.
Two experiments were used to offer a practical comparison between regression and filtering
methods. The first is a mouse-tracking program, which adds stochastic noise to the path
of a users mouse input, offering a visual, qualitative comparison, as well as a quantitative
comparison in the error between predicted and true mouse paths. The second experiment
is the balancing of a two-wheeled robot, which uses regression and filtering separately to
mitigate the stochastic noise present in angle measurements in order to improve balance. In
the latter experiment, there is no precise measurement to be used as target, so the regres-
sion methods will be used in conjunction with a filter and compared to themselves and the
performance of the filter instead of a true target.
The two experiments had conflicting results in the performance of the regression methods.
The mouse-tracking experiment showed that standard linear regression and lasso-regularized
linear regression are viable alternatives to filters depending on the level of noise and the de-
gree of nonlinearity in the trajectory. The balancing robot experiment showed that the
performance of these methods suffer significantly without a true training target, and were
significantly outperformed by the traditional filtering methods. In each case, however, the
regression methods showed promising results, which with more investigation could be a use-
ful tool in the control of oscillatory dynamic systems.

Introduction

In the control of dynamic systems, success is often measured by the proximity of a system
to a desired trajectory or equilibrium state while maintaining robustness to inherent noise.
Measurement devices such as accelerometers, gyroscopes, altimeters, GPS, etc. often come
with varying degrees of stochastic noise. In systems that require continuous measurement to
maintain equilibrium, a filter is often used to help mitigate this noise. It does so by measuring
a moving average of the noisy measurements at one or higher dimensions to obtain an

1

underlying trend. There are a number of different types of noise filters, the majority of which
observe the noisy measurements on one or higher orders to make estimates on the trend of
the underlying mean. These filters have a few shortcomings, including a linear assumption
in most, and the inability to recognize patterns in measurements to improve performance.
A better understanding of these patterns could provide a much more effective dynamic
control system. While typically only used retrospectively, evaluating patterns underneath
stochastic noise is the primary use-case of regression methods in machine learning, so in
theory its potential to be applied in this space is promising.

The Filters

While machine learning methods have been used in conjunction with filters such as the
Wiener filter in signal processing, this project will focus purely on dynamic control. As
such, the filters that will be observed are the Kalman filter, the extended Kalman filter, and
to a lesser extent the complementary filter.

A Kalman filter is a Bayesian optimal estimation algorithm, often used in cases where
system states cannot be measured directly in the presence of noise. In short, the simple
Kalman filter uses the collected noisy data to provide a joint probability distribution of
the underlying true measurement based on the noisy input. It is essentially continuously
estimating the orientation by observing the angular velocity. The first step in evaluating the
filtered angle is known as the prediction step. The predicted state is, assuming the noise has
zero mean and u is known, is a function of the previous state prediction, the input control
vector, and their corresponding transition matrices:

x̂i+1|i = E
[
xi+1|zi

]
= Fix̂i|i +Gkuk

The estimate variance, or the mean squared error in the estimate:

Pi+1|i = FiPi|iF
T
i +Qk

Now, with this prediction x̂i+1|i, another observation is taken: zi+1 which is used to update
the prediction in what is called the update or correction step:

x̂i+1|i+1 = K
′

i+1x̂i+1|i +Ki+1zi+1

where K
′

and K are weight (gain) matrices. K
′

can be set to 1, and K, the Kalman gain,
can be found with the following relationship:

Ki+1 = Pi+1|iH
T
i+1

[
Hi+1Pi+1|iH

T
i+1 +Ri+1

]−1
where Ri+1 is the observation noise and Hi is the output transition matrix.

Where the simple Kalman filter makes a linear assumption about the observed measure-
ments, the extended Kalman filter expands on this by linearizing around the current esti-
mate by re-calculating a new Jacobian with each update, for both the prediction and update
steps. Effectively this means that it is able to more adequately account for nonlinear trends.
The functions are the same as above, except that the state and output transition matrices
are partially differentiated, becoming Jacobians:

Fi+1 =
∂fi+1

∂x
(x̂i) and Hi+1 =

∂hi+1

∂x
(x̂i+1|i)

2

The complementary filter is more specific to the application of the balancing robot, as it
takes advantage of the two methods to measure angular acceleration from the onboard IMU,
or Inertial Measurement Unit. The first is the simple gyroscope readings, the second is the
time-derivative of the accelerometer. The complementary filter forms an estimate based on
both of these measurements as well as a priori, in this case its own calculated angle from a
previous calculation. The C++ application of this is a single line (appdx 0.2).
Because the measurements used in dynamic control are nearly always continuous, regres-
sion methods are used exclusively instead of classification methods. Based on the course
material in CSC2515, linear regression and support vector regression (SVR) were selected
as candidates for the experiments. Both methods were implemented using the free scikit-
learn library in Python. More details on their implementation are explained later on a
per-experiment basis

Mouse-tracking Experiment

The mouse-tracking experiment was intended to be a quick preliminary experiment in order
to offer a qualitative comparison of the filters and regression methods. The mouse input
from the user is captured in (x,y) coordinates, onto which a normally distributed noise is
applied. The filters accept only this noisy trajectory as an input, and attempt to smooth the
noise using the aforementioned methods to track a path that should be as close as possible
to the actual underlying mouse trajectory. The regression methods use the noisy trajectory
as input data and the true trajectory as training targets. It then uses the following noisy
inputs to provide a prediction of what the unknown corresponding true trajectory is. This
is conveyed below, with true and noisey trajectory in light and dark blue, respectively:

Figure 1: Simple Linear Regression on the Mouse Trajectory

Because of the multivariate nature of the experiment, SVR was not implemented, instead
using lasso-regularized linear regression in its place as an alternative method to standard
linear regression.
The mouse trajectories used to evaluate the filters and regression methods were intentionally
oscillatory to mimic the nature of the two-wheel balancing robot system. This provides a
repeating pattern of the true trajectory with which the regression methods should theoret-
ically be able to map to offer better results. A visual of the results of the experiments is
shown below:

3

Figure 2: Close-up Comparison of Mouse-tracking Performance

From the figure above, the bright yellow KF follows the trajectory, but is still significantly
diverged due to repeated nonlinearity. The standard linear regression model, red, and the
lasso-regularized linear regression model, green, perform better than the filters, but they
have the advantage of knowing the true underlying mouse position from the previous points
for training. The EKF is a poor estimator in this case; it filters out the oscillation almost
entirely, and was thus omitted from this figure. The complementary filter was almost indis-
tinguishable from the KF and was omitted from the figure for clarity.

Quantitatively, the performance of the filters and regression methods based on the mean of
the euclidean distance in pixels from the true trajectory are shown below. Note that the
distance is calculated only over the prediction region of the regression methods, arbitrarily
chosen as 50 mouse measurements.

For a smooth, sinusoidal oscillation:

Kalman filter performance: 11.86

Complementary filter performance: 30.77

Standard linear regression performance: 4.08

Lasso-regularized linear regression performance: 4.07

4

For a sharp, highly nonlinear oscillation:

Kalman filter performance: 29.47

Complementary filter performance: 50.43

Standard linear regression performance: 3.19

Lasso-regularized linear regression performance: 3.19

Unsurprisingly the Kalman and Complementary filters, which make a linear assumption
of the data, perform poorly in the highly nonlinear oscillations. The regression methods,
however, perform better with the nonlinear input. This is due to their ability to model the
pattern of oscillation without diverging due to ’momentum’ like the filters.

Robot Experiment

The purpose of the robot experiment was, like the mouse-tracking experiment, to evaluate
the performance of the filtering and regression methods in estimating true trajectories in
the presence of measurement noise. Unlike the two-dimensional (x,y) coordinates of the
mouse-tracker, this experiment uses angle as the only dimension. In addition, unlike the
mouse-tracking experiment there is no true trajectory in this case to use as a training
or performance reference. As explained previously, the angle and its time-derivative are
measured continuously by the inertial measurement unit mounted along the wheel axis
between the motors. The unit chosen for this experiment is the popular MPU6050. The
mean of its measurements is notoriously accurate despite its low cost, but it is subject to
a considerable amount of stochastic noise especially at high-frequency oscillations like in
the balancing robot system. The full parts list for the constructed robot can be found in
appendix 0.5.

Figure 3: Constructed Balancing Robot

5

The two-wheeled balancing robot is based on the inverted pendulum model (appdx 0.6).
The controller used to balance the robot is a simple PD controller (appdx 0.4) - while more
complex controllers such as sliding mode could offer better performance, this controller
was chosen so that the balancing success would intentionally depend more on the filtering.
The derivations of the inverted pendulum model and the controller are omitted in favor of
machine learning-related content.
The raw angle data from a single balancing run along with filtered and regression-predicted
angles are shown below:

Figure 4: Constructed Balancing Robot

The filters were used in real-time for balancing the robot - in the above case, the simple
Kalman filter was used to maintain balance, while the rest were used to simply record
filtered angle measurements for comparison. The raw and filtered data was then exported
and assessed through the two regression methods. As mentioned previously, the expected
explanation for the poor performance of the regression methods compared to the success in
the mouse-tracking experiment is that here there is no true angle to train the models. It
depends entirely on the success of the filter measurements (in this case, the extended Kalman
filter), however it is clearly visible from the charts that the EKF angle diverges significantly
from the trend of the raw angle after the first two oscillations. The quantitative performance

6

comparison based on mean angle variation from the EKF angle is below:

Kalman filter performance: 6.90

Complementary filter performance: 7.54

Standard linear regression performance: 19.10

SVR performance: 18.73

From the plot and the performance values it is clear that the standard linear regression and
SVR methods suffer from the lack of a true target value. From the plot, however, linear
regression does seem to follow the oscillation in a better phase than the filters, however its
amplitude is nowhere near the true angle. It is likely that with more time to adjust filter
parameters and perhaps applying a gain to the linear regression estimates, the regression
model could be a viable alternative.

Conclusion

Based on the two experiments, between regression and real-time noise filtering, each method
has its own benefits and drawbacks. If scaled to higher computational power, the rate
of measurement polling could be increased, and the regression models could be adjusted
frequently enough for it to be viable. If this were the case, it would benefit in that it would
be more self-correcting than the EKF, and more robust to local noise than the KF. This
application of regression methods seem like a serious possibility in the future of nonlinear
control.

7

Appendix

0.1 Literary Comparison

This practical implementation of these regression methods in nonlinear dynamic control
seems to be a rare combination. Papers closely related to the subject were very sparse,
with one notable exception; A group from Stanford’s CS229 course published a paper titled
’Improving Accuracy of Intertial Measurement Units using Support Vector Regression’ (Ref-
erence 11). In the paper the group discusses their experiment using SVR with a low-cost
IMU along with a high-accuracy motion-capture system of a person’s knee. Immediately
the biggest difference between this experiment and the above is the presence of an accurate
reference trajectory. The group used the accurate readings to train the model along with
the noisy IMU readings, and saw a root-mean-squared error reduction of more that 50%
versus the raw angle. The group did not compare these results to any traditional noise
filtering methods, however, so it is difficult to compare their success to the balancing robot
or mouse-tracking experiments.

0.2 Complementary Filter codes

The C++ code for the balancing robot:

float complementary angle (float a c c e l ang l e , float gyro av , float dt){
//C++ Complementary filter implementation

k1 = 0 . 9 8 ; //set k1 parameter here

k2 = 1 − k1 ;

comp angle = ((k1)∗ (comp angle + (gyro av ∗dt))+(a c c e l a n g l e ∗k2)) ;
}

The Python code for the mouse-tracker:

d e f comp l ementa ry f i l t e r x (x measured) :
’ ’ ’

C a l c u l a t i o n i s o f t h e f o r m :

x = k 1 * (o l d _ x + x _ d o t * d t) + k 2 * (m e a s u r e d _ x)

W h e r e p a r a m e t e r s k 1 a n d k 2 a r e b o t h p o s i t i v e a n d k 1 + k 2 = 1

’ ’ ’

D e f i n e t h e c o e f f i c i e n t s h e r e :

k1 = 0.45
k2 = 1 − k1

T h i s g i v e s t h e t i m e c h a n g e , dt , i n s e c o n d s

g l o b a l new time x
o ld t ime x = new time x
new time x = time . time ()

T h i s i s s e t b e c a u s e n e w _ t i m e = / = t i m e f r o m t h e s t a r t o f t h e p r o g r a m

i f o ld t ime x == 0 :
o ld t ime x = new time x

dt = new time x − o ld t ime x

g l o b a l x comp
g l o b a l x o ld
x comp = k1 ∗ (x comp + (x measured − x o ld) ∗ dt) + k2 ∗ (x measured)

p r i n t (x _ c o m p)

r e t u r n x comp

8

0.3 Kalman filter and EKF code

For the Kalman.h library, see: https://github.com/TKJElectronics/KalmanFilter

My extended Kalman filter C++ implementation based on the above library is shown below:

/ *

A d a p t e d f r o m K r i s t i a n L a u s z u s ’ K a l m a n . h l i b r a r y u n d e r t h e G P L 2 L i c e n s e : h t t p s : / / g i t h u b . c o m / L a u s z u s

G P L 2 L i c e n s e

M o d i f i e d t o b e a n E x t e n d e d K a l m a n F i l t e r b y J a c k s o n B a n b u r y , 2 0 1 7

* /

i f n d e f Ex Kalman h
d e f i n e Ex Kalman h

c l a s s Ex Kalman {
p u b l i c :

Ex Kalman () {
/ * W e w i l l s e t t h e v a r i a b l e s l i k e so , t h e s e c a n a l s o b e t u n e d b y t h e u s e r * /

Q angle = 0 . 001 ;
Q bias = 0 . 003 ;
R measure = 0 . 0 3 ;

angle = 0 ; / / R e s e t t h e a n g l e

b ia s = 0 ; / / R e s e t b i a s

/ / S i n c e w e a s s u m e t h a t t h e b i a s i s 0 a n d w e k n o w t h e s t a r t i n g a n g l e (u s e s e t A n g l e) , t h e e r r o r

/ / c o v a r i a n c e m a t r i x i s s e t l i k e s o :

P [0] [0] = 0 ;
P [0] [1] = 0 ;
P [1] [0] = 0 ;
P [1] [1] = 0 ;

} ;
/ / T h e a n g l e s h o u l d b e i n d e g r e e s a n d t h e r a t e s h o u l d b e i n d e g r e e s p e r s e c o n d

/ / a n d t h e d e l t a t i m e i n s e c o n d s

d o u b l e getAngle (d o u b l e newAngle , d o u b l e newRate , d o u b l e dt) {

/ / D i s c r e t e E X T E N D E D K a l m a n f i l t e r t i m e u p d a t e e q u a t i o n s - T i m e U p d a t e (" P r e d i c t ")

/ / U p d a t e x h a t - P r o j e c t t h e s t a t e a h e a d

/ * S t e p 1 * /

ra te = newRate − b ia s ;
/ / - - - U n l i k e t h e r e g u l a r K a l m a n f i l t e r , w h e r e t h i s w a s s u m (d t * r a t e) - - - / /

/ / - - - h a t { x } _ (i) i s s u m (d t * a n g l e) - - - / /

angle += dt∗newAngle ;
/ / U p d a t e e s t i m a t i o n e r r o r c o v a r i a n c e - P r o j e c t t h e e r r o r c o v a r i a n c e a h e a d

/ * S t e p 2 * /

/ / - - - T h i s i s t h e s a m e b e t w e e n K F a n d E K F - - - / /

P [0] [0] += dt ∗ (dt∗P [1] [1] − P [0] [1] − P [1] [0] + Q angle) ;
P [0] [1] −= dt ∗ P [1] [1] ;
P [1] [0] −= dt ∗ P [1] [1] ;
P [1] [1] += Q bias ∗ dt ;

/ / D i s c r e t e K a l m a n f i l t e r m e a s u r e m e n t u p d a t e e q u a t i o n s - M e a s u r e m e n t U p d a t e (" C o r r e c t ")

/ / C a l c u l a t e K a l m a n g a i n - C o m p u t e t h e K a l m a n g a i n

/ * S t e p 4 * /

S = P [0] [0] + R measure ;

/ * S t e p 5 * /

/ / - - - T h i s i s t h e s a m e b e t w e e n K F a n d E K F - - - / /

K[0] = P [0] [0] / S ;
K[1] = P [1] [0] / S ;

/ / C a l c u l a t e a n g l e a n d b i a s - U p d a t e e s t i m a t e w i t h m e a s u r e m e n t z k (n e w A n g l e)

/ * S t e p 3 * /

y = newAngle − angle ;
/ * S t e p 6 * /

angle += K[0] ∗ newAngle ;
b ia s += K[1] ∗ newAngle ;

/ / C a l c u l a t e e s t i m a t i o n e r r o r c o v a r i a n c e - U p d a t e t h e e r r o r c o v a r i a n c e

/ * S t e p 7 * /

/ / - - - T h e s e a r e t h e s a m e b e t w e e n K F a n d E K F - - - / /

P [0] [0] −= K[0] ∗ P [0] [0] ;
P [0] [1] −= K[0] ∗ P [0] [1] ;
P [1] [0] −= K[1] ∗ P [0] [0] ;
P [1] [1] −= K[1] ∗ P [0] [1] ;

r e t u r n angle ;
} ;
v o i d setAngle (d o u b l e newAngle) { angle = newAngle ; } ; / / U s e d t o s e t a n g l e , t h i s s h o u l d b e

/ / s e t a s t h e s t a r t i n g a n g l e

d o u b l e getRate () { r e t u r n ra te ; } ; / / R e t u r n t h e u n b i a s e d r a t e

/ * T h e s e a r e u s e d t o t u n e t h e K a l m a n f i l t e r * /

v o i d setQangle (d o u b l e newQ angle) { Q angle = newQ angle ; } ;
v o i d setQbias (d o u b l e newQ bias) { Q bias = newQ bias ; } ;
v o i d setRmeasure (d o u b l e newR measure) { R measure = newR measure ; } ;

d o u b l e getQangle () { r e t u r n Q angle ; } ;
d o u b l e getQbias () { r e t u r n Q bias ; } ;
d o u b l e getRmeasure () { r e t u r n R measure ; } ;

9

p r i v a t e :
/ * K a l m a n f i l t e r v a r i a b l e s * /

d o u b l e Q angle ; / / P r o c e s s n o i s e v a r i a n c e f o r t h e a c c e l e r o m e t e r

d o u b l e Q bias ; / / P r o c e s s n o i s e v a r i a n c e f o r t h e g y r o b i a s

d o u b l e R measure ; / / M e a s u r e m e n t n o i s e v a r i a n c e

d o u b l e angle ; / / T h e a n g l e c a l c u l a t e d b y t h e K a l m a n f i l t e r - p a r t o f t h e 2 x 1 s t a t e v e c t o r

d o u b l e b ia s ; / / T h e g y r o b i a s c a l c u l a t e d b y t h e K a l m a n f i l t e r - p a r t o f t h e 2 x 1 s t a t e v e c t o r

d o u b l e ra te ; / / U n b i a s e d r a t e c a l c u l a t e d f r o m t h e r a t e a n d t h e c a l c u l a t e d b i a s

d o u b l e P [2] [2] ; / / E r r o r c o v a r i a n c e m a t r i x - T h i s i s a 2 x 2 m a t r i x

d o u b l e K[2] ; / / K a l m a n g a i n - T h i s i s a 2 x 1 v e c t o r

d o u b l e y ; / / A n g l e d i f f e r e n c e

d o u b l e S ; / / E s t i m a t e e r r o r

} ;

e n d i f

The Python EKF library used in the mousetracking script can be found at:
https://github.com/simondlevy/TinyEKF

My simple Kalman filter Python implementation simply uses the OpenCV Kalman filter:

d e f kalman tracker () :
’ ’ ’

T r a c k s w i t h a s i m p l e K a l m a n (N O T E X T E N D E D) f i l t e r

’ ’ ’

kalman = cv2 . KalmanFilter (4 ,2)
kalman . measurementMatrix = np . array ([[1 , 0 , 0 , 0] , [0 , 1 , 0 , 0]] , np . f l o a t 3 2)
kalman . t r an s i t i onMat r i x = np . array ([[1 , 0 , 1 , 0] , [0 , 1 , 0 , 1] , [0 , 0 , 1 , 0] , [0 , 0 , 0 , 1]] , np . f l o a t 3 2)
kalman . processNoiseCov = np . array ([[1 , 0 , 0 , 0] , [0 , 1 , 0 , 0] , [0 , 0 , 1 , 0] , [0 , 0 , 0 , 1]] , np . f l o a t 3 2) ∗ 0 .03

r e t u r n kalman

0.4 PD Controller

The equation for the PD controller for the robot is as follows:

U = Kpθθ +Kdθ θ̇ +Kpxx+Kdxẋ

Where the K parameters are the adjusted weights for the angular and translational velocities
and accelerations.

0.5 Robot Parts List

Arduino Uno (Atmega328p):

MPU6050

Dual VNH2SP30 Motor Driver

2x 12v, 320RPM DC Motors with 330 Hall ratio encoders

3-cell Lithium Polymer battery (appx. 12v)

Chassis based on custom laser-cut 6mm acrylic

10

0.6 Inverted Pendulum Model

11

References

[1] Rich Chi Ooi. Balancing a Two-Wheeled Autonomous Robot. The University of Western
Australia, 2003.

[2] Vaswani, Namrata Kalman and Extended Kalman Filtering. Iowa State University:
https://pdfs.semanticscholar.org/1bab/607c38764ecdccd4f4589407ddd14a453923.pdf

[3] Abdul Gafar Self-Balancing Robot. The University of Manchester, 2016.

[4] Zhao-Qin Guo, Jian-Xin Xu, Tong Heng Lee. Design and implementation of a new sliding
mode controller on an underactuated wheeled inverted pendulum. National University of
Singapore, Franklin Institute, 2013.

[5] Gabriel Terejanu. Extended Kalman Filter Tutorial. The University at Buffalo:
https://www.cse.sc.edu/ terejanu/files/tutorialEKF.pdf

[6] Control of an Inverted Pendulum. Linkopings University, Sweden
https://www.control.isy.liu.se/student/tsrt19/ht2/file/invpendpmenglish.pdf

[7] Kalman, R.E., Bucy, R.S. Forecasting, Structural Time Series Models and the Kalman
Filter. Cambridge University Press, 1961.

[8] Simonn D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches.
Wiley, 2006.

[9] Zhang, et al. Nonlinear Noise Filtering with Support Vector Regression. UEST of China,
2006. DOI: 10.1109/ISDA.2006.207

[10] Boots, Bryon. Machine Learning for Modeling Real-World Dynamical Systems. Georgia
Tech. https://www.cc.gatech.edu/ lsong/teaching/CSE6740fall14/BBoots.pdf

[11] Ahuja, et al. Improving Accuracy of Interial Measurement Units using Sup-
port Vector Regression. Stanford. https://www.cc.gatech.edu/ lsong/teach-
ing/CSE6740fall14/BBoots.pdf

12

